Model May Predict Colectomy Likelihood at First Colitis Episode

This article originally appeared here.
Clinical features predicted both colectomy and steroid dependence with reasonable accuracy
Clinical features predicted both colectomy and steroid dependence with reasonable accuracy

HealthDay News — Clinical features, including response at day 7 of hospitalization for the index episode of acute severe colitis (ASC), can predict both colectomy and steroid dependence with reasonable accuracy, according to a study published online August 12 in the Journal of Gastroenterology and Hepatology.

Saransh Jain, MD, from the All India Institute of Medical Sciences in New Delhi, and colleagues constructed a random forest-based machine learning model to predict the long-term risk of colectomy or steroid dependence following an index episode of ASC. At index admission, patients avoiding colectomy were categorized as complete (CRs; no more than 3 non-bloody stools per day) or incomplete responders (IRs), based upon response to corticosteroids at day 7. 

Related Articles

The researchers found that of 1,731 patients with ulcerative colitis, 10% had an index episode of ASC. At index admission, 11% of patients underwent colectomy, and 26% had one over a median follow-up of 56 months. For IRs, the hazard ratio for colectomy was 3.6, compared to CRs. Based on four variables (response at day seven of hospitalization, steroid use during first year of diagnosis, longer disease duration prior to ASC, and number of extra-intestinal manifestations), the model was able to predict colectomy with an accuracy of 77 percent.

"Disease behavior of ASC in India is similar to the West, with a third undergoing colectomy at 10 years," the authors write.

Abstract
Full Text (subscription or payment may be required)