Here's Why Current Strategies to Combat Antibiotic Resistance May Not Work

Here's Why Current Strategies to Combat Antibiotic Resistance May Not Work
Here's Why Current Strategies to Combat Antibiotic Resistance May Not Work

Antibiotics are wonderful drugs for treating bacterial infections. Unfortunately, disease-causing bacteria can become resistant to antibiotics that are meant to kill them. This is called selective pressure – the bacteria that are susceptible to the drug are killed, but the ones that withstand the antibiotic survive and proliferate. This process results in the emergence of antibiotic-resistant strains.

Once a bacterial strain is resistant to several different antibiotics, it has become a multi-drug-resistant (MDR) microbe. When there are virtually no antibiotics available to treat an infected patient, a microbe is said to be “pan-resistant.“ These strains are becoming more and more common in hospitals and in the community at large. You might have heard of some of them: for instance, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE) and carbapenem-resistant Enterobacteriaceae (CRE).

Bacteria can become drug-resistant in two ways – resistance can be natural, meaning that the genes conferring resistance are already present in the bacterial chromosome, or they can be acquired through mutation or by picking up antibiotic-resistance genes from other microbes.

It is now possible to use new DNA-sequencing technologies to take a closer look at how the antibiotic resistance can make some bacteria weaker or stronger. And in a new study, we found that – contrary to conventional wisdom around antibiotics – resistance can actually make some bacteria fitter and even more virulent.

Loading links....